698 research outputs found

    The impact of cultural dissonance and acculturation orientations on immigrant students' academic performance

    Get PDF
    Indexación: Scopus; Scielo; Redalyc.Prior research has documented meaningful differences between school performance of immigrant and native students. Multicultural education has been associated with academic failure of foreign students. e aim of this study was to examine the impact of a set of psychosocial variables on the perceived academic achievement of first generation immigrant adolescents from public secondary schools in Northern Spain. Results showed that 46% of the variability in foreign students’ perceived academic performance was explained by home-school cultural dissonance. We also explored the impact of acculturation orientation to separation, perception of discrimination from teachers, school adjustment, and psychological well-being in academic performance. Any multicultural education context should take into account psychosocial adjustment, given its influence on academic performance of all studentsSe han hallado diferencias significativas entre el rendimiento académico de los inmigrantes y el de los estudiantes nativos. Sin embargo, hay una escasa evidencia acerca de los aspectos psicosociales de este fenómeno. El objetivo de este estudio fue examinar el impacto de un conjunto de variables psicosociales: disonancia cultural y orientaciones de aculturación en el rendimiento académico percibido de adolescentes inmigrantes de primera generación de centros de Educación Secundaria en el Norte de España. Los resultados mostraron que alrededor del 46% de la variabilidad en el rendimiento era explicada por la disonancia cultural entre escuela y hogar. Cualquier contexto de educación multicultural ha de tomar en consideración el ajuste psicosocial, dada su influencia en el rendimiento académico de los estudiantes.http://www.redalyc.org/jatsRepo/647/64753989003/index.htm

    Qinghai-like H5N1 from Domestic Cats, Northern Iraq

    Get PDF

    Accumulation of copy-back viral genomes during respiratory syncytial virus infection is preceded by diversification of the copy-back viral genome population followed by selection

    Get PDF
    RNA viruses generate nonstandard viral genomes during their replication, including viral genomes of the copy-back (cbVGs) type that cannot replicate in the absence of a standard virus. cbVGs play a crucial role in shaping virus infection outcomes due to their ability to interfere with virus replication and induce strong immune responses. However, despite their critical role during infection, the principles that drive the selection and evolution of cbVGs within a virus population are poorly understood. As cbVGs are dependent on the virus replication machinery to be generated and replicated, we hypothesized that host factors that affect virus replication exert selective pressure on cbVGs and drive their evolution within a virus population. To test this hypothesis, we used respiratory syncytial virus (RSV) as a model and took an experimental evolution approach by serially passaging RSV in immune-competent human lung adenocarcinoma A549 control and immune-deficient A549 Signal transducer and activator of transcription 1 (STAT1) KO cells, which allow higher levels of virus replication. As predicted, we observed that virus populations accumulated higher amounts of cbVGs in the more permissive A549 STAT1 KO cells over time; however, unexpectedly, the predominant cbVG species after passages in the two conditions were different. While A549 STAT1 KO cells accumulated relatively short cbVGs, A549 control cells mainly contained cbVGs of much longer predicted size, which have not been described previously. These long cbVGs were predominant at first in both cell line

    Cooling SABER with a miniature pulse tube refrigerator

    Get PDF
    Utah State University/Space Dynamics Laboratory (USU/SDL), teaming with NASA Langley Research Center, is currently building the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER) instrument. Stringent mass and power constraints, together with a greater than two year mission life, led to the selection of a TRW miniature pulse tube refrigerator to cool SABER\u27s infrared detectors to the required temperature of 75 K. This paper provides an overview of the SABER thermal management plan and the challenges encountered in matching the refrigerator characteristics with instrument performance requirements under the broadly variant space environments expected for this mission. Innovative technologies were developed to keep heat loads within the limited cooling capacity of the miniature refrigerator, as well as mechanically isolating but thermally connecting the refrigerator cold block to the focal plane assembly (FPA). A passive radiator will maintain the SABER telescope at an average temperature of 230 K while a separate radiator will reject heat from the refrigerator and electronics at approximately 260 K. Significant breadboard tests of various components of the SABER instrument have taken place and the details of one of these will be discussed. The test included attaching a miniature mechanical refrigerator, borrowed from the Air Force, to the SABER FPA. This opportunity gave the SABER team a significant head start in learning about integrating and testing issues related with the TRW miniature pulse tube refrigerator. SABER is scheduled to be launched in January 2000 as the primary instrument of NASA\u27s TIMED (Thermosphere-lonosphere-Mesosphere Energetics and Dynamics) spacecraft. The TIMED program is being managed by the Applied Physics Laboratory at Johns Hopkins University

    Participation in Transition(s):Reconceiving Public Engagements in Energy Transitions as Co-Produced, Emergent and Diverse

    Get PDF
    This paper brings the transitions literature into conversation with constructivist Science and Technology Studies (STS) perspectives on participation for the first time. In doing so we put forward a conception of public and civil society engagement in sustainability transitions as co-produced, relational, and emergent. Through paying close attention to the ways in which the subjects, objects, and procedural formats of public engagement are constructed through the performance of participatory collectives, our approach offers a framework to open up to and symmetrically compare diverse and interconnected forms of participation that make up wider socio-technical systems. We apply this framework in a comparative analysis of four diverse cases of civil society involvement in UK low carbon energy transitions. This highlights similarities and differences in how these distinct participatory collectives are orchestrated, mediated, and subject to exclusions, as well as their effects in producing particular visions of the issue at stake and implicit models of participation and ‘the public’. In conclusion we reflect on the value of this approach for opening up the politics of societal engagement in transitions, building systemic perspectives of interconnected ‘ecologies of participation’, and better accounting for the emergence, inherent uncertainties, and indeterminacies of all forms of participation in transitions

    AnFlo: Detecting anomalous sensitive information flows in Android apps

    Get PDF
    Smartphone apps usually have access to sensitive user data such as contacts, geo-location, and account credentials and they might share such data to external entities through the Internet or with other apps. Confidentiality of user data could be breached if there are anomalies in the way sensitive data is handled by an app which is vulnerable or malicious. Existing approaches that detect anomalous sensitive data flows have limitations in terms of accuracy because the definition of anomalous flows may differ for different apps with different functionalities; it is normal for "Health" apps to share heart rate information through the Internet but is anomalous for "Travel" apps. In this paper, we propose a novel approach to detect anomalous sensitive data flows in Android apps, with improved accuracy. To achieve this objective, we first group trusted apps according to the topics inferred from their functional descriptions. We then learn sensitive information flows with respect to each group of trusted apps. For a given app under analysis, anomalies are identified by comparing sensitive information flows in the app against those flows learned from trusted apps grouped under the same topic. In the evaluation, information flow is learned from 11,796 trusted apps. We then checked for anomalies in 596 new (benign) apps and identified 2 previously-unknown vulnerable apps related to anomalous flows. We also analyzed 18 malware apps and found anomalies in 6 of them

    A Compact Modular Soft Surface With Reconfigurable Shape and Stiffness

    Get PDF
    A variety of reconfigurable surface devices, utilizing large numbers of actuated physical pixels to produce discretized 3D contours, have been developed for different purposes in research and industry. The difficulty of integrating many actuators in close configuration has limited the DoF and resolution and performance of existing devices. Utilizing vacuum power and soft material actuators, we have developed a soft reconfigurable surface (SRS) with multi-modal control and performance capabilities. The SRS is comprised of a square grid array of linear vacuum-powered soft pneumatic actuators (linear V-SPAs), built into plug-and-play modules which enable the arrangement, consolidation, and control of many DoF. In addition to the practical benefits of system integration, this architecture facilitates the construction of customized assemblies with an overall compact form factor. A series of experiments is performed to illustrate and validate the versatility of the SRS for achieving diverse tasks including force controlled modulation of interface pressure through integrated sensors, lateral manipulation of a variety of objects, static and dynamic shape and pattern generation for haptic interaction, and variable surface stiffness tuning. This SRS concept is scalable, space efficient and features diverse functional potential. This will extend the utility and accessibility of tangible robotic interfaces for future applications from industrial to home and personal use

    A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine

    Get PDF
    A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could generate a subpopulation of V. cholerae that continues to produce TCP and CT in the rice water stools of cholera patients

    The impact of culture on physiological processes of emotion regulation: a comparison of US and Chinese preschoolers

    Full text link
    Cognitive determinants of emotion regulation, such as effortful control, have been hypothesized to modulate young children's physiological response to emotional stress. It is unknown, however, whether this model of emotion regulation generalizes across Western and non‐Western cultures. The current study examined the relation between both behavioral and questionnaire measures of effortful control and densely sampled, stress‐induced cortisol trajectories in U.S. and Chinese preschoolers. Participants were 3‐ to 5‐ year‐old children recruited from the United States (N = 57) and Beijing, China (N = 60). Consistent with our hypothesis, U.S. children showed a significant negative relation between maternal‐rated inhibitory control and both cortisol reactivity and recovery. However, this was not replicated in the Chinese sample. Children in China showed a significant positive relation between maternal‐rated attentional focusing and cortisol reactivity that was not seen in the U.S. Results suggest that children who reside in Western and non‐Western cultures have different predictors of their emotion‐related stress response.We compared associations between specific effortful control subcomponents and stress‐induced cortisol trajectories in preschool children residing in the U.S. and China. U.S. preschoolers showed an expected negative association between maternal‐rated inhibitory control with cortisol reactivity and recovery. In contrast, Chinese preschoolers showed a positive association between maternal‐rated attentional focusing and cortisol reactivity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111122/1/desc12227.pd

    The epidemiology of fighting in group-housed laboratory mice

    Get PDF
    Injurious home-cage aggression (fighting) in mice affects both animal welfare and scientific validity. It is arguably the most common potentially preventable morbidity in mouse facilities. Existing literature on mouse aggression almost exclusively examines territorial aggression induced by introducing a stimulus mouse into the home-cage of a singly housed mouse (i.e. the resident/intruder test). However, fighting occurring in mice living together in long-term groups under standard laboratory housing conditions has barely been studied. We performed a point-prevalence epidemiological survey of fighting at a research institution with an approximate 60,000 cage census. A subset of cages was sampled over the course of a year and factors potentially influencing home-cage fighting were recorded. Fighting was almost exclusively seen in group-housed male mice. Approximately 14% of group-housed male cages were observed with fighting animals in brief behavioral observations, but only 14% of those cages with fighting had skin injuries observable from cage-side. Thus simple cage-side checks may be missing the majority of fighting mice. Housing system (the combination of cage ventilation and bedding type), genetic background, time of year, cage location on the rack, and rack orientation in the room were significant risk factors predicting fighting. Of these predictors, only bedding type is easily manipulated to mitigate fighting. Cage ventilation and rack orientation often cannot be changed in modern vivaria, as they are baked in by cookie-cutter architectural approaches to facility design. This study emphasizes the need to invest in assessing the welfare costs of new housing and husbandry systems before implementing them
    corecore